Part Number Hot Search : 
SR1150 BH6541KV FMM50 CS5151 16F68 MS12BNA IRFP240 SQ4435EY
Product Description
Full Text Search
 

To Download XC9504B093DAL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/53 xc9504 series 2 ch. step-up / inverting dc/dc controller ics  general description the xc9504 series are pwm control, pwm/pfm switching, 2 c hannel (step-up and inverting) dc/dc controller ics. with 0.9v of standard voltage supply internal, and using exte rnally connected components, the output 1 voltage (step-up dc/dc controller) can be set freely within a range of 1.5v ~ 30v. since output 2 (inverting dc/dc controller) has a built-in 0.9v reference voltage (accuracy 2%), a negative voltage can be set with the external components. with a 180khz frequency, the size of the external components can be reduced. oscillation frequencies of 300khz are also available as custom designed products. the control of the xc9504 series can be switched betwee n pwm control and pwm/pfm automat ic switching control using external signals. control switches from pwm to pfm during lig ht loads when automatic switch ing is selected and the series is highly efficient from light loads through to large output currents. noise is easily reduced with pwm control since the frequency is fixed. the series gives freedom of control selection so that control suited to the applic ation can be selected. soft-start time is internally set to 10ms (output 1) which of fers protection against rush currents and voltage overshoot when the power is switched on.  applications ? power supplies for lcd ? pdas ? palm top computers ? portable audio systems ? various multi-function power supplies  features 2ch. dc/dc controller (step-up + inverting) output voltage range : 1.5v ~ 30v (set by fb1 pin) output current : more than 20ma ?????? (v in =3.3v, v out =15v) soft-start internally set-up output voltage range : -30v ~ 0v (set by fb2 pin) output current : ? -20ma (v in =3.3v, v out =-7.0v) supply voltage range : 2.0v ~ 10.0v input voltage range : 0.9v ~ 10.0v oscillation frequency : 180khz (15%) *300khz, 500khz custom maximum duty cycle : 80% (typ.) control method : pwm or pwm/pfm selectable stand-by function : 3.0  f(max.) packages : msop-10, usp-10  typical performance characteristics  typical application circuit ? xc9504b092a input: 3.3v, output ? : 15v, output ? : -7v ? ? green operation compatible etr0704_001 output voltage vs. output current
2/53 xc9504 series pin number pin name function 1 ext 1 channel 1: external transistor drive pin 2 v dd supply voltage 3 fb1 channel 1: output voltage monitor feedback pi n 4 pwm1 channel 1: pwm/pfm switching pin 5 en1 channel 1: enable pin 6 en2 channel 2: enable pin 7 pwm2 channel 2: pwm/pfm switching pin 8 fb2 channel 2: output voltage monitor feedback pi n 9 gnd ground 10 ext2/ channel 2: external transistor drive pin  pin configuration  pin assignment  13mm  usp-10 (bottom view)  product classification ? ordering information xc9504 ?????? designator description symbol description ?? type of dc/dc controller b : standard type (10 pin) ?? ?? output voltage 09 : fb products d ? =0, ? =9 fixed 2 : 180khz 3 : 300khz (custom) ?? oscillation frequency 5 : 500khz (custom) a : msop-10 ?? packages d : usp-10 r : embossed tape, standard feed ?? device orientation l : embossed tape, reverse feed
3/53 xc9504 series  a bsolute maximum ratings  block di a gram parameter symbol ratings units v dd pin voltage v dd - 0.3 ~ 12.0 v fb1, 2 pin voltage v fb - 0.3 ~ 12.0 v en1, 2 pin voltage v en - 0.3 ~ 12.0 v pwm1, 2 pin voltage v pwm - 0.3 ~ 12.0 v ext1, 2 pin voltage v ext - 0.3 ~ v dd + 0.3 v ext1, 2 pin current i ext ? 100 ma msop-10 150 power dissipation usp-10 pd 150 mw operating temperature range topr - 40 ~ + 85 ? storage temperature range tstg - 55 ~ + 125 ? ta = 2 5 ?
4/53 xc9504 series  electrical characteristics parameter symbol conditions min. typ. max. units circuit supply voltage (*1) v dd 2.0 - 10.0 v - v out1 0.9 - - v v dd ? 2.0v i out =1ma v out2 - - 0.0 v ? v out1 2.0 - 10.0 v output voltage range (*3) v outset v in ? 0.9v i out =1ma (*2) v out2 - - 0.0 v ? supply current 1 i dd1 fb=0v, fb2=0.1 - 90 190  a ? en1=3.0v, en2=0v, fb1=0v supply current 1-1 i dd1-1 en2=3.0v, en1=0v, fb2=1.2v - 60 120  a ? fb1=0v, fb2=0v supply current 1-2 i dd1-2 fb1=1.2v, fb2=1.2v - 80 150  a ? supply current 2 i dd2 fb1=1.2v, fb2=0v - 70 132  a ? stand-by current i stb same as i dd1 , en1=en2=0v - 1.0 3.0  a ? oscillation frequency f osc same as i dd1 153 180 207 khz ? en1, 2 "high" voltage v enh fb1=3.0v, fb2=0v 0.65 - - v ? en1, 2 "low" voltage v enl fb1=3.0v, fb2=0v - - 0.20 v ? en1, 2 "high" current i enh fb1=3.0v, fb2=0v - - 0.50  a ? en1, 2 "low" current i enl en1, 2=0v, fb1=3.0v, fb2=0v - - -0.50  a ? pwm1, 2 "high" current i pwmh fb1=3.0v, fb2=0v, pwm1, 2=3.0v - - 0.50  a ? pwm1, 2 "low" current i pwml fb1=3.0v, fb2=0v, pwm1, 2=0v - - -0.50  a ? fb1, 2 "high" current i fbh fb1=3.0v, fb2=0.8v - - 0.50  a ? fb1, 2 "low" current v fbl fb1=1.0v, fb2=0v - - -0.50  a ? unless otherwise stated , v dd =3.0v , pwm1 , 2=3.0v , en1 , 2 = 3.0v ta = 2 5 ? xc9504b092a common characteristics (fosc = 180khz) ? parameter symbol conditions min. typ. max. units circuit fb1 voltage v fb1 v dd =3.0v, v in =1.5v, i out =10ma 0.882 0.900 0.918 v ? using tr: 2sd1628, i out =1.0ma, r fb11 =200k 
, r fb12 =75k 
- - 0.9 v ? operating start voltage 1 (*2) v st1-1 v dd o v out1 : i out1 =10ma - - 2.0 v ? oscillation start voltage 1 v st2-1 fb1=0v - - 0.8 v ? maximum duty ratio 1 mindty1 same as i dd1 75 80 87 % ? minimum dut y ratio 1 maxdty1 same as i dd2 --0 % ? pfm duty ratio 1 pfmdty1 no load, v pwm1 =0v 22 30 38 % ? efficiency 1 effi1 i out1 = 130ma, n-ch mosfet: xp161a1355p - 85 - % ? soft-start time 1 tss1 v out1  0.95v, en1=0v  0.65v 5.0 10.0 20.0 ms ? ext1 "hi g h" on resistance r extbh1 fb1=0v, ext1=v dd -0.4v - 28 47 
? ext1 "low" on resistance r extbl1 en1=fb1=1.2v, ext1=0.4v - 22 30 
? pwm1 "high" voltage v pwmh1 no load 0.65 - - v ? pwm1 "low" voltage v pwml1 no load - - 0.20 v ? unless otherwise stated, v dd =en1=pwm1=3.0v, en2=pwm2=gnd, ext2=open, fb2=open, v in =1.8v output 1 characteristics ? step-up controlle r parameter symbol conditions min. typ. max. units circuit fb2 voltage v fb2 v dd =3.0v 0.882 0.900 0.918 v ? i out =1.0ma, r fb11 =200k 
, r fb12 =75k 
operation start voltage 2 v st1-2 r fb21 =17.5k 
, r fb22 =10k 
, en1=p wm1 =3.0v - - 2.0 v ?? oscillating start voltage 2 v st2-2 fb2=1.2v - - 2.0 v ? maximum duty ratio 2 maxdty2 same as i dd1 75 80 87 % ? minimum duty ratio 2 mindty2 same as i dd2 - - 0 % ? pfm duty ratio 2 pfmdty2 no load, v pwm2 =0v 22 30 38 % ? efficiency 2 effi2 i out2 =-150ma, p-ch mosfet: xp162a12a6p - 76 - % ? ext2 "high" on resistance r extbh2 en2=fb2= 0v, ext2=v dd -0.4v - 28 47 
? ext2 "low" on resistance r extbl2 fb2=3.0v, ext2=0.4v - 22 30 
? pwm2 "high" voltage v pwmh2 no load 0.65 - - v ? pwm2 "low" voltage v pwml2 no load - - 0.20 v ? unless otherwise stated, v dd =en2=pwm2=3.0v, pwm1=en1=gnd, ext1=open, fb1=open, v in =3.0v output 2 characteristics ? inverting dc/dc controller ta = 2 5 ? (fosc = 180khz) ? ta = 2 5 ? (fosc = 180khz) ?
5/53 xc9504 series parameter symbol conditions min. typ. max. units circuit supply voltage (*1) v dd 2.0 - 10.0 v - v dd ? 2.0v, i out =1ma v out1 0.9 - - v dd o v out v out2 - - 0.0 v ? v in ? 0.9v, i out =1ma (*2) v out1 2.0 - 10.0 output voltage range (*3) v outset v dd =v out v out2 - - 0.0 v ? supply current 1 i dd1 fb=0v, fb2=1.2v - 110 250  a ? en1=3.0v, en2=0, fb1=0v supply current 1-1 i dd1-1 en2=3.0v, en1=0v, fb2=1.2v - 80 150  a ? fb1=0v, fb2=0v supply current 1-2 i dd1-2 fb1=1.2v, fb2=1.2v - 90 200  a ? supply current 2 i dd2 fb1=1.2v, fb2=0v - 80 160  a ? stand-by current i stb same as i dd1 , en1=en2=0v - 1.0 3.0  a ? oscillation frequency fosc same as i dd1 255 300 345 khz ? en1, 2 "high" voltage v enh fb1=0v, fb2=3.0v 0.65 - - v ? en1, 2 "low" voltage v enl fb1=0v, fb2=3.0v ? - - 0.20 v ? en1, 2 "high" current i enh fb1=3.0v, fb2=0v ? - - 0.50  a ? en1, 2 "low" current i enl en1, 2=0v, fb1=3.0v, fb2=0v ? - - -0.50  a ? pwm1, 2 "high" current i pwmh fb1=3.0v, fb2=0v, pwm1, 2=3.0v ? - - 0.50  a ? pwm1, 2 "low" current i pwml fb1=3.0v, fb2=0v, pwm1, 2=0v ? - - -0.50  a ? fb1, 2 "high" current i fbh fb1=3.0v, fb2=0.8v ? - - 0.50  a ? fb1, 2 "low" current v fbl fb1=1.0v, fb2=0v ? - - -0.50  a ? unless otherwise stated, v dd =3.0v, pwm1, 2=3.0v, en1, 2 = 3.0v xc9504b093a ?? common characteristics ta = 2 5 ? parameter symbol conditions min. typ. max. units circuit fb 1 voltage v fb1 v dd =3.0v, v in =1.5v, i out1 =10ma 0.882 0.900 0.918 v ? using tr: 2sd1628, i out =1.0ma, r fb11 =200k 
, r fb12 =75k 
- - 0.9 v ? operating start voltage 1 (*2) v st1-1 v dd o v out1 : i out1 =10ma - - 2.0 v ? oscillation start voltage 1 v st2-1 fb1=0v - - 0.8 v ? maximum duty ratio 1 mindty1 same as i dd1 75 80 87 % ? minimum duty ratio 1 maxdty2 same as i dd2 - - 0 % ? pfm duty ratio 1 pfmdty1 no load, v pwm1 =0v 22 30 38 % ? efficiency 1 effi1 i out1 = 130ma, n-ch mosfet: xp161a1355p - 85 - % ? soft-start time 1 t ss1 v out1  0.95v, en1=0v  0.65v 5.0 10.0 20.0 ms ? ext1 "high" on resistance r extbh1 fb1=0v, ext1=v dd -0.4v - 28 47 
? ext1 "low" on resistance r extbl1 en1=fb1=1.2v, ext1=0.4v - 22 30 
? pwm1 "high" voltage v pwmh1 no load 0.65 - - v ? pwm1 "low" voltage v pwml1 no load - - 0.20 v ? unless otherwise stated, v dd =en1=pwm1=3.0v, en2=pwm2=gnd, ext2=open, fb2=open, v in =1.8v output 1 characteristics ?? step-up controller ta = 2 5 ? parameter symbol conditions min. typ. max. units circuit fb 2 voltage v fb2 v dd =3.0v 0.882 0.900 0.918 v ? i out2 =1.0ma, r fb11 =200k 
, r fb12 =75k 
operating start voltage 2 v st1-2 r fb21 =17.5k 
,r fb22 =10k, en1=pwm1=3.0v - - 2.0 v ?? oscillation start voltage 2 v st2-2 fb2=1.2v - - 2.0 v ? maximum duty ratio 2 maxdty2 same as i dd1 75 80 87 % ? minimum duty ratio 2 mindty3 same as i dd2 - - 0 % ? pfm duty ratio 2 pfmdty2 no load, v pwm2 =0v 22 30 38 % ? efficiency 2 (*4) effi2 i out2 = -150ma, p-ch mosfet: xp162a12a6p - 75 - % ? ext2 "high" on resistance r extbh2 en2=fb2= 0v, ext2=v dd -0.4v - 28 47 
? ext2 "low" on resistance r extbl2 fb2=3.0v, ext2=0.4v - 22 30 
? pwm2 "high" voltage v pwmh2 no load 0.65 - - v ? pwm2 "low" voltage v pwml2 no load - - 0.20 v ? unless otherwise stated, v dd =en2=pwm2=3.0v, pwm1=en1=gnd, ext1=open, fb1=open, v in =3.0v output 2 characteristics ? inverting dc/dc controller ta = 2 5 ?  electrical characteristics (continued) (fosc = 300khz) ? (fosc = 300khz) ? (fosc = 300khz) ?
6/53 xc9504 series parameter symbol conditions min. typ. max. units circuit supply voltage (*1) v dd 2.0 - 10.0 v - v dd ? 2.0v, i out =1ma v out1 0.9 - - v dd o v out v out2 - - 0.0 v ? v in ? 0.9v, i out =1ma (note 2) v out1 2.0 - 10.0 output voltage range (*3) v outset v dd =v out v out2 - - 0.0 v ? supply current 1 i dd1 fb=0v, fb2=1.2v - 165 350  a ? en1=3.0v, en2=0, fb1=0v supply current 1-1 i dd1-1 en2=3.0v, en1=0v, fb2=1.2v - 110 220  a ? fb1=0v, fb2=0v supply current 1-2 i dd1-2 fb1=1.2v, fb2=1.2v - 130 270  a ? supply current 2 i dd2 fb1=1.2v, fb2=0v - 100 200  a ? stand-by current i stb same as i dd1 , en1=en2=0v - 1.0 3.0  a ? oscillation frequency fosc same as i dd1 425 500 575 khz ? en1, 2 "high" voltage v enh fb1=0v, fb2=3.0v 0.65 - - v ? en1, 2 "low" voltage v enl fb1=0v, fb2=3.0v - - 0.20 v ? en1, 2 "high" current i enh fb1=3.0v, fb2=0v - - 0.50  a ? en1, 2 "low" current i enl en1, 2=0v, fb1=3.0v, fb2=0v - - -0.50  a ? pwm1, 2 "high" current i pwmh fb1=3.0v, fb2=0v, pwm1, 2=3.0v - - 0.50  a ? pwm1, 2 "low" current i pwml fb1=3.0v, fb2=0v, pwm1, 2=0v - - -0.50  a ? fb1, 2 "high" current i fbh fb1=3.0v, fb2=0.8v - - 0.50  a ? fb1, 2 "low" current v fbl fb1=1.0v, fb2=0v - - -0.50  a ? unless otherwise stated, v dd =3.0v, pwm1, 2=3.0v, en1, 2 = 3.0v xc9504b095a ?? common characteristics ta = 2 5 ? parameter symbol conditions min. typ. max. units circuit fb 1 voltage v fb1 v dd =3.0v, v in =1.5v, i out1 =10ma 0.882 0.900 0.918 v ? using tr: 2sd1628, i out =1.0ma, r fb11 =200k 
, r fb12 =75k 
- - 0.9 v ? operating start voltage 1 (*2) v st1-1 v dd o v out1 : i out1 =10ma - - 2.0 v ? oscillation start voltage 1 v st2-1 fb1=0v - - 0.8 v ? maximum duty ratio 1 mindty1 same as i dd1 75 80 87 % ? minimum duty ratio 1 maxdty2 same as i dd2 - - 0 % ? pfm duty ratio 1 pfmdty1 no load, v pwm1 =0v 22 30 38 % ? efficiency 1 effi1 i out1 = 130ma, n-ch mosfet: xp161a1355p - 83 - % ? soft-start time 1 t ss1 v out1  0.95v, en1=0v  0.65v 5.0 10.0 20.0 ms ? ext1 "high" on resistance r extbh1 fb1=0v, ext1=v dd -0.4v - 28 47 
? ext1 "low" on resistance r extbl1 en1=fb1=1.2v, ext1=0.4v - 22 30 
? pwm1 "high" voltage v pwmh1 no load 0.65 - - v ? pwm1 "low" voltage v pwml1 no load - - 0.20 v ? unless otherwise stated, v dd =en1=pwm1=3.0v, en2=pwm2=gnd, ext2=open, fb2=open, v in =1.8v output 1 characteristics ?? step-up controller ta = 2 5 ? parameter symbol conditions min. typ. max. units test circuit fb 2 voltage v fb2 v dd =3.0v 0.882 0.900 0.918 v ? i out2 =1.0ma, r fb11 =200k 
, r fb12 =75k 
operating start voltage 2 v st1-2 r fb21 =17.5k 
, r fb22 =10k 
, en1=pwm1=3.0v - - 2.0 v ?? oscillation start voltage 2 v st2-2 fb2=1.2v - - 2.0 v ? maximum duty ratio 2 maxdty2 same as i dd1 75 80 87 % ? minimum duty ratio 2 mindty2 same as i dd2 - - 0 % ? pfm duty ratio 2 pfmdty2 no load, v pwm2 =0v 22 30 38 % ? efficiency 2 (*4) effi2 i out2 = -150ma, p-ch mosfet: xp162a12a6p - 71 - % ? ext2 "high" on resistance r extbh2 en2=fb2= 0v, ext2=v dd -0.4v - 28 47 
? ext2 "low" on resistance r extbl2 fb2=3.0v, ext2=0.4v - 22 30 
? pwm2 "high" voltage v pwmh2 no load 0.65 - - v ? pwm2 "low" voltage v pwml2 no load - - 0.20 v ? unless otherwise stated, v dd =en2=pwm2=3.0v, pwm1=en1=gnd, ext1=open, fb1=open, v in =3.0v output 2 characteristics ? inverting dc/dc controller ta=25 ?  electrical characteristics (continued) (fosc = 500khz) ? (fosc = 500khz) ? (fosc = 500khz) ?
7/53 xc9504 series note: *1 although the ic's step-up switch ing operations start from a v dd of 0.8v, the output voltage and oscillation frequency are stabilized at v dd ? 2.0v. therefore, a v dd of more than 2.0v is recommended when v dd is supplied from v in or other power sources. *2 although the ic's operations start from a v in of 0.9v, the ic's power supply pin (v dd ) and output voltage monitor pin (fb1) should be connected to v out1 . with operations from v in =0.9v, the 2nd channel's (output 2) en2 pin should be disabled. once output voltage v out1 is more than 2.0v, the en2 pin should be enabled. *3 please be careful not to exceed the breakdown voltage level of the peripheral parts. *4 effi={ [ (output voltage) x (output current) ] / [ (input volt age) x (input current) ] } x 100  electrical characteristics (continued)
8/53 xc9504 series  operational explanation the xc9504 series are dual dc/dc (step-up + inverting) converter controller ics with built-in high speed, low on resistance buffers. error amplifier 1 is designed to monito r the output voltage and it compares the feedback voltage1 (fb1) with the reference voltage vref1. in response to feedback of a voltage lower than the reference voltage vref1, the output voltage of the error amp. decreases error amplifier 2 is designed to monitor the output voltage a nd it compares the feedback voltage 2 (fb2) with the reference voltage vref 2. in response to feedback of a voltage lower t han the reference voltage vref2, the output voltage of the error amp. decreases. this circuit generates the internal reference clock. the ramp wave generator generates a saw-tooth waveform based on outputs from the osc generator. the pwm comparator compares outputs from the error amp. and saw-tooth waveform. when the voltage from the error amp's output is low, the external will be set to on. this circuit generates pfm pulses. control can be switched between pwm control and pwm/pfm automatic switching control using external signals. the pwm/pfm automatic switching mode is se lected when the voltage of the pwm1 (2 ) pin is less than 0.2v, and the control switches between pwm and pfm automatically depending on the load. as the pfm circuit generates pulses based on outputs from the pwm comparator, shifting between modes occurs smoothly. pwm control mo de is selected when the voltage of the pwm1 (2) pin is more than 0.65v. noise is easily reduced with pwm control since the oscillation frequency is fixed. control suited to the application c an easily be selected which is useful in audio applications, for example, where traditionally, efficiencies have been sacrificed during stand-by as a result of using pwm control (due to the noise problems associated with the pfm mode in stand-by). the reference voltage, vref1 (fb1 pin voltage)=0.9v, is adj usted and fixed by laser trimming (for output voltage settings, please refer to the functional settings notes below.). to protect against inrush current, when the power is switched on, and also to protect against voltage overshoot, soft-start time is se t internally to 10ms. it should be noted, however, that this circuit does not protect the load capacitor (c l ) from inrush current. with the vref voltage limited, and depending upon the input to error amp 1, the operation maintains a balance between the two inputs of error amps and controls the ext pin's on time so that it doesn't increase more than is necessary. the reference voltage, vref2 (fb2 pin voltage)=0. 9v, is adjusted and fixed by laser trimming. this function controls the operation and s hutdown of the ic. when the voltage of the en1 or en2 pins is 0.2v or less, the mode will be disable, the channel's operations will stop and the ext1 pin will be ke pt at a low level (the external n-ch mosfet will be off) and the ext2 pin will be kept at a high level (the external p-ch mosfet will be off). when both en1 and en2 are in a state of chip disable, cu rrent consumption will be no more than 3.0  a. when the en1 or en2 pin's voltage is 0.65v or more, the mode will be enable and operations will recommence. with channel one (output 1) soft-start, 95% of the set output voltage will be reached within 10msec (typ.) from the moment of enable.
9/53 xc9504 series < output voltage setting, ch.1 (step-up dc/dc converter controller) > output voltage can be set by adding exter nal split resistors. output voltage is determined by the following equation, based on the values of r fb11 and r fb12 . the sum of r fb11 and r fb12 should normally be 1 m 
or less. v out1 =0.9  (r fb11 +r fb12 )/r fb12 the speed-up capacitor for phase compensation's (c fb1 ) value should be adjusted using the formula fzfb=1/(2  c fb1  r fb11 ) so that it equals 12khz. depending on the application, the inductance val ue l, and the load capacity value c l , adjustments to this value are suggested so that the value is somewhere between 1khz to 50khz. [calculation example] when r fb11 = 470k 
and r fb1 2 = 30k 
: v out1 = 0.9  ( 470k+30k ) / 30k = 15.0v. v out (v) r fb11 (k 
) r fb12 (k 
) c fb1 (pf) v out (v) r fb11 (k 
) r fb12 (k 
) c fb1 (pf) v out (v) r fb11 (k 
) r fb12 (k 
) c fb1 (pf) 1.5 220 330 62 2.7 360 180 33 10.0 680 68 18 1.8 220 220 62 3.0 560 240 24 12.0 160 13 82 2.0 330 330 39 3.3 200 75 62 15.0 470 30 27 2.2 390 390 33 5.0 82 18 160 20.0 470 22 27 2.5 390 390 33 8.0 120 15 100 30.0 390 12 34 [typical example] < output voltage setting, ch. 2 (inverting dc/dc converter) > output voltage can be set by adding reference voltage and split resistors externally. output voltage is determined using the following equation and is based on the values of r fb21 and r fb22 . the sum of r fb21 and r fb22 should normally be 200k 
or less. the equation uses ch 1's (v out1 ) output voltage calculation method for the reference voltage. v out2 = (0.9-v out1 )  (r fb21 /r fb22 ) + 0.9v [calculation example] when r fb21 =17.5k 
, r fb22 =10k 
, v out1 =3.3v, v out2 = - 3.3v the value of speed-up capacitor for phase compensation c fb2 1: [conditions: heavy load (when coil current is continuous.)] fzfb2 = 1/2  c fb21  r fb21 ) = 10khz depending on the application, the inductance value l, and the load capacity value c l , adjustments to this value are suggested so that the value is somewhere between 1khz to 50khz. [conditions: light load (when coil current is discontinuous.)] less than c fb21 =0.1  f depending on the application, the inductance value l, and the load capacity value c l , adjustments to this value are suggested. > example circuit 1: using voltage of ch 1 (step-up) > example circuit 2: using a positive regulator channel 1 (step-up) circuits should be enable by setting en1 to high level so that a stable voltage is provided. inrush current to the inverter when the supply voltage v dd of the ic is 2.0 v or higher can be controlled by setting en 1 and en 2 to enable (?h? level) simultaneously. a stable positive voltage produced by a positive voltage regulator or by other means is usable. v out2 = (0.9 - v rout ) x (r fb21 / r fb22 ) + 0.9v sbd2 rfb21 cfb21 vout2 cl2 rfb22 fb2 inside of xc9504 ic vr to the other circuit vr_out sbd2 rfb21 cfb21 vout2 cl2 rfb22 vout1 fb2 inside of xc9504 ic  operational explanation (continued)
10/53 xc9504 series conditions: light load (when coil current is discontinuous.) channel one: step-up dc/dc converter controlle r ics channel two: inverter dc/dc converter * mosfet * mosfet tr.1: xp151a12a2 (n-ch power mosfet, torex) tr.2: xp151a12c0 (p-ch power mosfet, torex) note: v gs break down voltage of the xp151a12a2 is 12v so please be careful with the power supply voltage. note: v gs break down voltage of the xp151a12c0 is 12v so please be careful with the power supply voltage. sd1: ma2q737 (schottky diode, matsushita) sd2: ma2q737 (schottky diode, matsushita) l1: 15  h (d412f, toko, fosc=300khz) l2: 22  h (d412f, toko, fosc=300khz) 22  h (d412f, toko, fosc=180khz) 44  h (d412f, toko, fosc=180khz) please set so that the coil current is discontinuous. please set so that the coil current is discontinuous. c l1 : 25v, 4.7  f (ceramic) c l2 : 10v, 4.7  f (ceramic) * npn tr. * pnp tr. tr.1: 2sd1628 (sanyo) tr.2: 2sa1213 (toshiba) r b1 : 500 
adjust in accordance with load & tr.?s hfe. r b2 : 500 
adjust in accordance with load & tr.?s hfe. r b1 < (v in - 0.7) x (hfe/ic - r extbh ) r b2 < (v in - 0.7) x (hfe/ic - r extbl ) c b1 : 2200pf (ceramic) c b2 : 2200pf (ceramic) c b1 < (2 x r b1 x fosc x 0.7) c b2 < (2 x r b2 x fosc x 0.7) conditions: light load (when coil current is discontinuous.) channel one: step-up dc/dc converter controlle r ics channel two: inverter dc/dc converter * mosfet * mosfet tr.1: xp151a12a2 (n-ch power mosfet, torex) tr.2: xp151a12c0 (p-ch power mosfet, torex) note: v gs break down voltage of the xp151a12a2 is 12v so please be careful with the power supply voltage. note: v gs break down voltage of the xp151a12c0 is 12v so please be careful with the power supply voltage. sd1: ma2q737 (schottky diode, matsushita) sd2: ma2q737 (schottky diode, matsushita) crs02, cms02 (schottky diode, toshiba) l1: 15  h (cdrh5d28, sumida, fosc=300khz) l2: 15  h (cdrh5d28, sumida, fosc=300khz) 22  h (cdrh5d28, sumida, fosc=180khz) 22  h (cdrh5d28, sumida, fosc=180khz) c l1 : 16v, 4.7  f (tantalum) c l2 : 16v, 4.7  f (tantalum) increase capacity according to the equation below when the step-up voltage ratio is large and output current is high. increase capacity according to the equation below when the step-up voltage ratio is large and output current is high. c l =(c l standard value) x (i out1 (ma) / 300ma x v out1 / v in c l =(c l standard value) x (i out2 (ma) / 300ma x v out2 / v in * npn tr. * pnp tr. tr.1: 2sd1628 (sanyo) tr.2: 2sa1213 (toshiba) r b1 : 500 
adjust in accordance with load & tr.?s hfe. r b2 : 500 
adjust in accordance with load & tr.?s hfe. r b1 < (v in - 0.7) x (hfe/ic - r extbh ) r b2 < (v in - 0.7) x (hfe/ic - r extbl ) c b1 : c b1 < (2 x r b1 x fosc x 0.7) c b2 : 2200pf (ceramic) c b2 < (2 x r b2 x fosc x 0.7)  notes on use ? external components
11/53 xc9504 series  notes on use (continued) ? hint on application 1. channel 1 (step-up) how to shut down the output voltage during standby mode if the circuit configuration shown as an example of typical application circuits is used, voltage v in will occur at v out1 when the ic is in standby, the diode being bypassed. this can cause circuits connected to v out1 to malfunction. > example of typical application circuit 1: set r1 so as to prevent leakage current of n-ch mosfet 2. > example of typical application circuit 2: power ready function the combination of r 2, c 1, and the threshold voltage of approximately 0.7 v of npn bip 1 is used to produce a delay time between the circuits being enabled and p-ch mosfet 1 being switched on. delay time set to 20ms ensures power to be made ready in a favorable manner, as soft start of this product is completed during the delay time. set value (example) voltage (v) r2 (k ) c1 ( f) 2.5 430 0.15 3.3 470 0.18 5.0 430 0.33 time to make power ready is calculated by the equation below. time = - r2 x c1 x ln (1 - 0.7 / [on / off signal voltage ] set r1 so as to prevent leakage current of npn (bip 1). n-ch mosfet 2 and the inverter enables power to be turned off quickly. 2. channel 2 (inverting): soft start circuit channel 2 (inverting) is subject to the overshoot of output voltage 2 (v out2 ) at start-up. it is possible to control the overshoot of output voltage 2 (v out2 ), as shown by circuit example 1 in ?output voltage settings for channel 2? in ?function settings.? in this circuit configuration, en 1 and en 2 are enabled (set to ?h? level) simultaneously. this lets output voltage 1 (v out1 ) of channel 1 increase gently as soft start, thereby contro lling the overshoot. > example of typical application circuit: improved soft start this example is effective when en 1 and en 2 are enabled with different timings under light load condition (the coil current being discontinuous). vout1 sbd1 fb1 en1 pch mosfet1 inside of xc9504 ic rfb11 rfb12 cl1 cfb1 nch mosfet2 on/off signal r1 vout1 sbd1 fb1 en1 pch mosfet1 rfb11 rfb12 cfb1 cl1 r1 r2 c1 npn bip1 nch mosfet2 inside of xc9504 ic on/off signal sbd2 vout1 fb2 inside of xc9504 ic rfb21 cfb21 vout2 cl2 rfb22 en2 on/off signal pch mosfet1 r1 nch mosfet2 time to make soft start time is calculated by the equation below. time ss2 = -r fb21  c fb2 1 / ln 1 ? example) when v out1 = 15v and v out2 = - 7.5v, r fb21 = 59.6k 
, r fb22 = 100k 
by the equation below. v out2 = (0.9 - v out1 ) x (r fb21 / r fb22 ) + 0.9 when the light load, c fb21 =0.1  f or lower value can be used. therefore, when c fb21 =0.027  f, time_ss2 = 5.0ms and v out2 = 95% of setting value (0.9-v out2 )  r fb22 ) (v out1 ? 0.9)  r fb21 ) 3. channel 2 (inverting): withstand voltage of transistor the voltage applied between the drain and source is the sum of v in and v out2 . select a transistor with an absolute v dss rating that is suitable for your operating conditions. example: the voltage applied across v ds of a transistor will be 20.0v if v in = 5.0 v and v out2 = -15.0 v. under this condition, a transistor with v dss higher than 20.0v should be selected. (use a transistor with v dss that is 1.5 times the applied voltage or more, as a standard.)
12/53 xc9504 series  test circuits
13/53 xc9504 series  test circuits(continued)
14/53 xc9504 series circuit 1, circuit 2 l1, l2: 22  h (cdrh5d28, sumida) : xc9504b092a 15  h (cdrh5d28, sumida) : xc9504b093a 10  h (cdrh5d28, sumida) : xc9504b095a sd1, sd2 : crs02 (schottky, toshiba) ec10qs06 (schottky, nihon inter) c l1 , c l2 : 16mce476md2 (tantalum, nihon chemicon) 35mce335mb x 3 (tantal um, nihon chemicon) c in : 16mce476md2 npn tr 1 : 2sd1628 (sanyo) pnp tr 2 : 2sa1213 (toshiba) r fb : please use by the conditions as below. r fb11 + r fb12 ? 1m 
r fb21 + r fb22 ? 1m 
r fb11 / r fb12 = (setting output voltage / 0.9) - 1 v out2 = (0.9 - v out1 ) / (r fb21 / r fb22 ) + 0.9 c fb : fzfb = 1 /(2  c fb1  r fb11 ) = 1khz to 50khz (12khz usual) fzfb = 1 /(2  c fb2  r fb21 ) = 1khz to 50khz (12khz usual). circuit 4 l1 : 22  h (cdrh5d28 sumida) sd 1 : ma2q737 (schottky, matsushita) c l 1 : 16mce476md2 (tantalum, nihonchemicon) c in : 16mce476md2 (tantalum, nihonchemicon) n-ch mosfet : xp161a1355p (torex) circuit 5 l1 : 22  h (cdrh5d28, sumida) : xc9504b092a 15  h (cdrh5d28, sumida) : xc9504b093a 10  h (cdrh5d28, sumida) : xc9504b095a sd 1 : ma2q737 (schottky, matsushita) c l 1 : 16mce476md2 (tantalum, nihonchemicon) c in : 16mce476md2 (tantalum, nihonchemicon) n-ch mosfet : xp161a1355p (torex) circuit 7 l2 : 22  h (cdrh5d28, sumida) : xc9504b092a 15  h (cdrh5d28, sumida) : xc9504b093a 10  h (cdrh5d28, sumida) : xc9504b095a sd 2 : ma2q737 (schottky, matsushita) c l 2 : 16mce476md2 (tantalum, nihonchemicon) c in : 16mce476md2 (tantalum, nihonchemicon) p-ch mosfet : xp162a12a6p (torex) 1. pwm/pfm automatic switching if pwm/pfm automatic switching control is selected and the st ep-up ratio is low (e.g., from 4.5 v to 5.0 v), the control mode remains in pfm setting over the whole load range, sinc e the duty ratio under continuous-duty condition is smaller than the pfm duty ratio of the xc9504 se ries. the output voltage's ripple voltage becomes substantially high under heavy load conditions, with the xc9504 series appearing to be producing an abnormal oscillation. if this operation becomes a concern, set pins pwm to high to set t he control mode to pwm setting. for use under the above-mentioned condition, measured data of pwm/pfm automatic switching control shown on the data sheets are available up to i out = 100 ma. 2. ratings use the xc9504 series and peripheral components within the limits of their ratings.  external components used for the test circuits  note on use
15/53 xc9504 series  typical performance characteristics < 1 ch. ste p -u p dc/dc controller > (1) output voltage vs. output current (cer amic capacitor and compact inductor use )
16/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (1) output voltage vs. out put current (continued) (ceramic capacitor use) fosc=180khz, vout1= 10.0v 9.4 9.6 9.8 10.0 10.2 10.4 0.1 1 10 100 output current 1 iout1 (ma) output voltage1 vout1 ?? v e 3.3v vin=2.7v l1=100  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 5.0v 4.2v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 15.0v 14.4 14.6 14.8 15.0 15.2 15.4 0.1 1 10 100 output current 1 iout1 (ma) output voltage1 vout1 ? v e 3.3v vin=2.7v l1=68  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 4.2v 5.0v pwm/pfm switching control pwm control fosc=180khz, vout1= 10.0v 9.4 9.6 9.8 10.0 10.2 10.4 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e 5.0v vin=2.7v 3.3v l1=22  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 4.2v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 15.0v 14.4 14.6 14.8 15.0 15.2 15.4 0.1 1 10 100 output current 1 iout1 (ma) output voltage1 vout1 ?? v e 4.2v 5.0v vin=2.7v l1=22  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 20.0v 18.5 19.0 19.5 20.0 20.5 21.0 0.1 1 10 100 output current 1 iout1 (ma) output voltage1 vout1 ?? v e 5.0v vin=3.3v l1=22  h(cdrh4d18c), cl1=4.4  f(ceramic) sd1:crs02, tr1:xp151a11b0mr pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 30.0v 28.5 29.0 29.5 30.0 30.5 31.0 0.1 1 10 100 output current 1 iout1 (ma) output voltage1 vout1 ?? v e vin=3.3v 5.0v l1=22  h(cdrh4d18c), cl1=2  f(ceramic) sd1:crs02, tr1:2sk2857 pwm/pfm switching control pwm control  typical performance characteristics (continued)
17/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (1) output voltage vs. output current (continued) (tantalum capacitor use) * dotted arrow head pwm/pfm switching control fosc=180khz, vout1= 1.5v 1.2 1.3 1.4 1.5 1.6 1.7 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ?? v e l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 2.5v 2.2 2.3 2.4 2.5 2.6 2.7 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ?? v e vin=0.9v l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v 1.5v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 3.3v 3.0 3.1 3.2 3.3 3.4 3.5 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p vin=0.9v 1.2v,1.5v 2.7v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 5.0v 4.7 4.8 4.9 5.0 5.1 5.2 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e 2.7v vin=1.5v 4.2v 3.3v l1=22  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 8.0v 7.7 7.8 7.9 8.0 8.1 8.2 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1265 p 4.2v vin=3.3v 5.0v pwm/pfm switching control pwm contr ol  typical performance characteristics (continued)
18/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (1) output voltage vs. out put current (continued) (tantalum capacitor use) fosc=300khz, vout1= 2.5v 2.2 2.3 2.4 2.5 2.6 2.7 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 1.5v pwm/pfm switching control pwm control fosc=300khz, vout1= 3.3v 3.0 3.1 3.2 3.3 3.4 3.5 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 2.7v 1.5v pwm/pfm switching control pwm contr ol fosc=300khz, vout1= 5.0v 4.7 4.8 4.9 5.0 5.1 5.2 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.5v vin=1.2v 3.3v 2.7v 4.2v pwm/pfm switching control pwm control fosc=500khz, vout1= 2.5v 2.2 2.3 2.4 2.5 2.6 2.7 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=10  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 1.5v pwm/pfm switching control pwm control fosc=500khz, vout1= 3.3v 3.0 3.1 3.2 3.3 3.4 3.5 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e 1.5v vin=0.9v 1.2v 2.7v pwm/pfm switching control pwm control l1=10  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p fosc=500khz, vout1= 5.0v 4.7 4.8 4.9 5.0 5.1 5.2 0.1 1 10 100 1000 output current 1 iout1 (ma) output voltage1 vout1 ? v e l1=10  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.5v vin=0.9v 3.3v 2.7v 4.2v 1.2v pwm/pfm switching control pwm control * dotted arrow head pwm/pfm switching control  typical performance characteristics (continued)
19/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (2) efficiency vs. output current (ceramic capacitor and compact inductor use) fosc=180khz, vout1= 10.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=2.7v l1=22  h(llb2520), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 4.2v 5.0v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 15.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=2.7v l1=22  h(llb2520), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 3.3v 4.2v 5.0v pwm/pfm switching control pwm control fosc=180khz, vout1= 20.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=3.3v l1=22  h(llb2520), cl1=4.4  f(ceramic) sd1:crs02, tr1:xp151a11b0mr 5.0v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 30.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=3.3v l1=22  h(llb2520), cl1=2  f(ceramic) sd1:crs02, tr1:2sk2857 5.0v pwm/pfm switching control pwm contr ol  typical performance characteristics (continued)
20/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (2) efficiency vs. output current (continued) (ceramic capacitor use) fosc=180khz, vout1= 10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=2.7v l1=100  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 3.3v 4.2v 5.0v pwm/pfm switching control pwm control fosc=180khz, vout1= 15.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=2.7v l1=68  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 3.3v 5.0 4.2v pwm/pfm switching control pwm control fosc=180khz, vout1= 10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=2.7v l1=22  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 5.0 3.3v 4.2v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 15.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=2.7v l1=22  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 4.2v 5.0v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 20.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=3.3v l1=22  h(cdrh4d18c), cl1=4.4  f(ceramic) sd1:crs02, tr1:xp151a11b0mr 5.0v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 30.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) efficiency1 effi 1 (% ) vin=3.3v l1=22  h(cdrh4d18c), cl1=2  f(ceramic) sd1:crs02, tr1:2sk2857 5.0v pwm/pfm switching control pwm contr ol  typical performance characteristics (continued)
21/53 xc9504 series fosc=180khz, vout1= 8.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1265 p 4.2v vin=3.3v 5.0v pwm/pfm switching control pwm contr ol < 1 ch. step-up dc/dc controller > (continued) (2) efficiency vs. output current (continued) (tantalum capacitor use) * dotted arrow head pwm/pfm switching control fosc=180khz, vout1= 1.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) 1.2v vin=0.9v l1=22  h(cdrh5d28), c l1 =94  f(tantalum) sd1:cms02, tr1:xp161a1355p pwm/pfm switching control pwm control fosc=180khz, vout1= 2.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p vin=0.9v 1.5v pwm/pfm switching control pwm control fosc=180khz, vout1= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.5v vin=0.9v 2.7v 1.2v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 2.7v vin=1.5v 3.3v 4.2v pwm/pfm switching control pwm contr ol  typical performance characteristics (continued)
22/53 xc9504 series fosc=500khz, vout1= 5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=10  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 3.3v vin=0.9v 2.7v 1.5v 1.2v pwm/pfm switching control pwm control 4.2v < 1 ch. step-up dc/dc controller > (continued) (2) efficiency vs. output current (continued) (tantalum capacitor use) fosc=300khz, vout1= 2.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 1.5v pwm/pfm switching control pwm control fosc=300khz, vout1= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 1.5v 2.7v pwm/pfm switching control pwm control fosc=300khz, vout1= 5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.5v vin=1.2v 3.3v 2.7v 4.2v pwm/pfm switching control pwm contr ol fosc=500khz, vout1= 2.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) 1.2v vin=0.9v 1.5v l1=10  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p pwm/pfm switching control pwm control fosc=500khz, vout1= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) efficiency1 effi 1 (% ) l1=10  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 1.5v 2.7v pwm/pfm switching control pwm contr ol  typical performance ch a racteristics (continued) * dotted arrow head pwm/pfm switching control
23/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (3) ripple voltage vs. output current (cer amic capacitor and compact inductor use) fosc=180khz, vout1= 10.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) ripple voltage1 (mv) vin=2.7v l1=22  h(llb2520), c l1 =10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 5.0v 4.2v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 15.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) ripple voltage1 (mv) vin=2.7v l1=22  h(llb2520), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 3.3v 5.0v 4.2v pwm/pfm switching control pwm control fosc=180khz, vout1= 20.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) ripple voltage1 (mv) vin=3.3v l1=22  h(llb2520), cl1=4.4  f(ceramic) sd1:crs02, tr1:xp151a11b0mr 5.0v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 30.0v 0 20 40 60 80 100 0.1 1 10 output current 1 iout1 (ma) ripple voltage1 (mv) vin=3.3v l1=22  h(llb2520),cl1=2  f(ceramic) sd1:crs02, tr1:2sk2857 5.0v pwm/pfm switching control pwm contr ol  typical perfomance characteristics (continued)
24/53 xc9504 series < 1 ch. step-up dc/dc controller > (continued) (3) ripple voltage vs. output current (continued) (ceramic capacitor use) fosc=180khz, vout1= 15.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) ripple voltage1 (mv) vin=2.7v l1=68  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 5.0v 4.2v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 15.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) ripple voltage1 (mv) vin=2.7v l2=22  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp151a12a2mr 4.2v 5.0v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 30.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) ripple voltage1 (mv) vin=3.3v l1=22  h(cdrh4d18c), cl1=2  f(ceramic) sd1:crs02, tr1:2sk2857 5.0v pwm/pfm switching control pwm control fosc=180khz, vout1= 10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) ripple voltage1 (mv) vin=2.7v l1=100  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 5.0v 4.2v 3.3v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 10.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) vin=2.7v l1=22  h(cdrh4d18c), cl1=10  f(ceramic) sd1:crs02, tr1:xp151a12a2mr 3.3v 4.2v 5.0v pwm/pfm switching control pwm contr ol fosc=180khz, vout1= 20.0v 0 20 40 60 80 100 0.1 1 10 100 output current 1 iout1 (ma) ripple voltage1 (mv) vin=3.3v l1=22  h(cdrh4d18c), cl1=4.4  f(ceramic) sd1:crs02, tr1:xp151a11b0mr 5.0v pwm/pfm switching control pwm contr ol  typical performance characteristics (continued)
25/53 xc9504 series fosc=180khz, vout1= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) l1=22  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p vin=0.9v 1.5v 2.7v pwm/pfm switching control pwm control fosc=180khz, vout1= 8.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) 5.0v vin=3.3v l1=22  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1265p 4.2v pwm/pfm switching control pwm contr ol < 1 ch. step-up dc/dc controller > (continued) (3) ripple voltage vs. output current (continued) (tantalum capacitor use) * dotted arrow head pwm/pfm switching control fosc=180khz, vout1= 2.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) vin=0.9v 1.2v 1.5v l1=22  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p pwm/pfm switching control pwm control fosc=180khz, vout1= 5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) vin=1.5v l1=22  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p 4.2v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout1= 1.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) vin=0.9v 1.2v l1=22  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p pwm/pfm switching control pwm contr ol  typical perfomance characteristics (continued)
26/53 xc9504 series fosc=300khz, vout1= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 1.2v vin=0.9v 1.5v 2.7v pwm/pfm switching control pwm control fosc=500khz, vout1= 2.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) l1=10  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p vin=0.9v 1.5v pwm/pfm switching control pwm control fosc=500khz, vout1= 5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) l1=10  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p 4.2v vin=0.9v 2.7v 1.5v 3.3v 1.2v pwm/pfm switching control pwm control < 1 ch. step-up dc/dc controller > (continued) (3) ripple voltage vs. output current (continued) (tantalum capacitor use) fosc=300khz, vout1= 2.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p vin=0.9v 1.5v pwm/pfm switching control pwm control fosc=300khz, vout1= 5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) l1=15  h( cdrh5d28) , cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355 p vin=1.2v 3.3v 2.7v 4.2v pwm/pfm switching control pwm contr ol 1.5v fosc=500khz, vout1= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 1 iout1 (ma) ripple voltage1 (mv) 2.7v vin=0.9v 1.2v 1.5v pwm/pfm switching control pwm contr ol l1=10  h(cdrh5d28), cl1=94  f(tantalum) sd1:cms02, tr1:xp161a1355p  typical performance characteristics (continued) * dotted arrow head pwm/pfm switching control
27/53 xc9504 series fosc=300khz, vout2= -7.5v -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 0.1 1 10 output current 2 iout2 (ma) output voltage 2 vout2 ? v e vin=2.7v 3.3v 4.2v 5.0v l2=47  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol  typical performance ch a racteristics (continued) < 2 ch. inverting dc/dc controller > (4) output voltage vs. output current (cer amic capacitor and compact inductor use ) fosc=180khz, vout2= -7.5v -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 0.1 1 10 output current 2 iout2 (ma) output voltage 2 vout2 ? v e vin=2.7v 3.3v 4.2v 5.0v l2=22  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol fosc=180khz, vout2= -10.0v -10.6 -10.4 -10.2 -10.0 -9.8 -9.6 0.1 1 10 output current 2 iout2 (ma) output voltage 2 vout2 ? v e l2=22  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr vin=2.7v 3.3v 4.2v 5.0v pwm/pfm switching control pwm contr ol
28/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (4) output voltage vs. out put current (continued) (ceramic capacitor use) fosc=180khz, vout2= -7.5v -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 0 5 10 15 20 25 30 vin=2.7v l2=100  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 4.2v 3.3v 5.0v pwm/pfm switching control pwm contr ol output voltage 2 vout2 ? v e output current iout2 (ma) fosc=180khz, v out2 = -10.0v -10.6 -10.4 -10.2 -10.0 -9.8 -9.6 0 5 10 15 20 25 30 4.2v vin=2.7v 3.3v l2=100  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 5.0v pwm/pfm switching control pwm contr ol output voltage 2 vout2 ? v e output current iout2 (ma) fosc=180khz, vout2= -7.5v -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 020406080 4.2v 5.0v vin=2.7v 3.3v l2=22  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control output voltage 2 vout2 ? v e fosc=180khz, vout2= -10.0v -10.6 -10.4 -10.2 -10.0 -9.8 -9.6 0 20406080 vin=2.7v 3.3v 4.2v 5.0v output voltage 2 vout2 ? v e l2=15  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control output current iout2 (ma)  typical performance characteristics (continued)
29/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (4) output voltage vs. out put current (continued) (tantalum capacitor use) fosc=180khz, vout2= -7.5v -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 0 50 100 150 200 4.2v 5.0v vin=2.7v 3.3v l2=22  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p pwm/pfm switching control pwm contr ol output current iout2 (ma) output voltage 2 vout2 ? v e fosc=180khz, vout2= -10.0v -10.6 -10.4 -10.2 -10.0 -9.8 -9.6 0 50 100 150 l2=22  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p pwm/pfm switching control pwm contr ol output current iout2 (ma) vin=2.7v, 3.3v output voltage 2 vout2 ? v e fosc=300khz, v out2 = -5.0v -5.3 -5.2 -5.1 -5.0 -4.9 -4.8 0 50 100 150 200 250 vin=2.7v 3.3v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr 5.0v pwm/pfm switching control pwm control output voltage 2 vout2 ?? v e output current iout2 (ma) fosc=300khz, vout2= -7.5v -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 0 50 100 150 200 vin=2.7v 3.3v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr 5.0v pwm/pfm switching control pwm contr ol output voltage 2 vout2 ? v e output current iout2 (ma) fosc=300khz, v out2 = -10.0v -10.6 -10.4 -10.2 -10.0 -9.8 -9.6 0 20 40 60 80 100 120 vin=2.7v 3.3v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control output current iout2 (ma) output voltage 2 vout2 ? v e fosc=300khz, vout2= -15.0v -15.6 -15.4 -15.2 -15.0 -14.8 -14.6 0 20 40 60 80 100 120 vin=2.7v 3.3v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr 5.0v pwm/pfm switching control pwm contr ol output voltage 2 vout2 ? v e output current iout2 (ma)  typical performance characteristics (continued)
30/53 xc9504 series fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7 4.2v 5.0v l2=22  h(llb2520), c l2 =10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 4.2v vin=2.7v 5.0v 3.3v l2=22  h(llb2520), c l2 =10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control fosc=300khz, v out2 = -7.5v 0 20 40 60 80 100 0.1 1 10 output current 2 i out2 (ma) efficiency2 e ffi 2 (%) 3.3v vin=2.7v 5.0v l2=47  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol < 2 ch. inverting dc/dc controller > (continued) (5) efficiency vs. output current (ceramic capacitor and compact inductor use)  typical performance characteristics (continued)
31/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (5) efficiency vs. output current (continued) (ceramic capacitor use) fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v l2=100  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 5.0v 4.2v pwm/pfm switching control pwm contr ol fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 4.2v vin=2.7v l2=100  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 5.0v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v l2=22  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 5.0v 4.2v pwm/pfm switching control pwm control fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v l2=15  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 4.2v 5.0v pwm/pfm switching control pwm control  typical performance characteristics (continued)
32/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (5) efficiency vs. output current (continued) (tantalum capacitor use) fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v l2=22  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p 5.0v 4.2v pwm/pfm switching control pwm control fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v 5.0v 4.2v l2=22  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p pwm/pfm switching control pwm control fosc=300khz, vout2= -5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol fosc=300khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol fosc=300khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) 3.3v vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol fosc=300khz, vout2= -15.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol 3.3v  typical performance characteristics (continued)
33/53 xc9504 series fosc=300khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) ripple voltage2 (mv) vin=2.7v 3.3v 5.0v l2=22uh(llb2520), c l2 =10uf(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control < 2 ch. inverting dc/dc controller > (continued) (5) ripple voltage vs. output current (cer amic capacitor and compact inductor use) fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) ripple voltage2 (mv) 4.2v vin=2.7v l2=22  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 5.0v 3.3v pwm/pfm switching control pwm control fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) ripple voltage2 (mv) 4.2v vin=2.7v l2=22  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 5.0v 3.3v pwm/pfm switching control pwm control fosc=300khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) ripple voltage2 (mv) vin=2.7v 3.3v 5.0v l2=22  h(llb2520), c l2 =10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control  typical performance characteristics (continued)
34/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (5) ripple voltage vs. output current (continued) (ceramic capacitor use) fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) ripple voltage2 (mv) l2=100  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr vin=2.7v 3.3v 4.2v 5.0v pwm/pfm switching control pwm contr ol fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) ripple voltage2 (mv) l2=100  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr vin=2.7v 3.3v 4.2v 5.0v pwm/pfm switching control pwm contr ol fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) ripple voltage2 (mv) 5.0v vin=2.7v l2=22  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 3.3v 4.2v pwm/pfm switching control pwm control fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 output current 2 iout2 (ma) ripple voltage2 (mv) vin=2.7v l2=15  h(cdrh4d18c), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr 4.2v 3.3v pwm/pfm switching control pwm control 5.0v  typical performance characteristics (continued)
35/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (5) ripple voltage vs. output current (continued) (tantalum capacitor use) fosc=180khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) 4.2v vin=2.7v l2=22  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p 5.0v 3.3v pwm/pfm switching control pwm control pwm/pfm switching control pwm control fosc=180khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) 4.2v vin=2.7v l2=22  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p 3.3v 5.0v pwm/pfm switching control pwm contr ol fosc=300khz, vout2= -5.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) 3.3v vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control fosc=300khz, vout2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm contr ol 3.3v fosc=300khz, vout2= -10.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) vin=2.7v 5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control 3.3v fosc=180khz, vout2= -15.0v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) 3.3v vin=2.7v 5.0v pwm/pfm switching control pwm contr ol l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:crs02, tr2:xp152a12c0mr  typical performance characteristics (continued)
36/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (6) breakdown of output voltage fosc=300khz,vin= 3.3v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) efficiency2 effi 2 (% ) -7.5v vout= -5.0v -15.0v -10.0v l2=47  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr pwm/pfm switching control pwm control fosc=300khz,vin= 3.3v 0 20 40 60 80 100 0.1 1 10 output current 2 iout2 (ma) ripple voltage2 (mv) l2=47  h(llb2520), cl2=10  f(ceramic) sd2:crs02, tr2:xp152a12c0mr vout=-5.0v -7.5v -10.0v -15.0v pwm/pfm switching control pwm contr ol fosc=300khz,vin= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) vout=-5.0v -15.0v -10.0v -7.5v pwm contr ol l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737,tr2:xp162a12a6p fosc=300khz,vin= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) -7.5v vout=-5.0v l2=15  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p -15.0v -10.0v pwm control fosc=500khz,vin= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) vout=-5.0v -15.0v -10.0v -7.5v pwm control l2=10  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737,tr2:xp162a12a6p fosc=500khz,vin= 3.3v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) -7.5v vout=-5.0v l2=10  h(cdrh5d28), cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p -15.0v -10.0v pwm control  typical performance characteristics (continued)
37/53 xc9504 series < 2 ch. inverting dc/dc controller > (continued) (7) breakdown of coil inductance value fosc=300khz,vin3.3v,output2= -7.5v 0 20 40 60 80 100 0.1 1 10 100 1000 output current 2 iout2 (ma) efficiency2 effi 2 (% ) l=15uh 47uh 22uh 100uh pwm contr ol l2=cdrh5d28, cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12c0mr fosc=300khz,vin=3.3v,output2= -7.5v 0 20 40 60 80 100 1 10 100 1000 output current 2 iout2 (ma) ripple voltage2 (mv) 22uh l=15uh l2=cdrh5d28, cl2=94  f(tantalum) sd2:ma2q737, tr2:xp162a12a6p 47uh 100uh pwm contr ol  typical performance characteristics (continued)
38/53 xc9504 series xc9504b092 (180khz) 0 100 200 300 400 0246810 supply voltage vdd (v) supply current 1-1 idd1-1 (  a) topr=85 ? 25 ? - 40 ?  typical performance characteristics (continued) (8) supply current vs. supply voltage (9) supply current vs. supply voltage (10) supply current 1-2 vs. supply volta ge (11) supply current 2 vs. supply voltage (12) standby current vs. supply voltage ( 13) oscillation frequency vs. supply voltage xc9504b092 (180khz) 0 100 200 300 400 500 0246810 supply voltage vdd (v) supply current 1 idd1 (  a) topr=85 ? 25 ? - 40 ? xc9504b092 (180khz) 0 100 200 300 400 0246810 supply voltage vdd (v) supply current 1-2 idd1-2 (  a) xc9504b092 (180khz) 0 100 200 300 400 0246810 supply voltage vdd (v) supply currenty 2 idd2 (  a) topr=85 ? 25 ? - 40 ? xc9504b092 (180khz) 0 2 4 6 8 10 0246810 supply voltage vdd (v) standby current istb (  a) topr=85 ? 25 ? - 40 ? xc9504b092 (180khz) 150 160 170 180 190 200 210 0246810 supply voltage vdd (v) oscillation fr equency fosc ? khz e topr=25 ? 85 ? - 40 ?
39/53 xc9504 series xc9504b092 (180khz) 0 10 20 30 40 50 0246810 supply voltage vdd (v) ext1, 2 l on resistance ?
e topr=85 ? 25 ? - 40 ? xc9504b092 (180khz) 0 10 20 30 40 50 60 0246810 supply voltage vdd (v) ext 1, 2 h on resistance ?
e topr=85 ? 25 ? - 40 ? (14) pwm1, 2 'h''l' voltage vs. supply voltage (15) en1, 2 'h''l' voltage vs. supply voltage (16) maximum duty ratio 1, 2 vs. supply volt age (17) soft-start time 1 vs. supply voltage (18) ext1, 2 high on resistance vs. supply voltage (19) ext1, 2 low on resistance vs. supply voltage xc9504b092 (180khz) 0 0.2 0.4 0.6 0.8 0246810 supply voltage vdd (v) pwm1, 2 'h' 'l' voltage vpwm1, 2 (v) topr=25 85 ? - 40 ? xc9504b092 (180khz) 0 0.2 0.4 0.6 0.8 0246810 supply voltage vdd (v) en1, 2 'h' 'l' voltage ven1, 2(v) topr=25 ? 85 ? - 40 ? xc9504b092 (180khz) 65 70 75 80 85 90 0246810 supply voltage vdd (v) max. duty ratio 1, 2 maxdty1, 2 (%) topr=85 ? 25 ? - 40 ? xc9504b092 (180khz) 0 5 10 15 20 25 0246810 supply voltage vdd (v) soft-start time 1 tss1 (msec)  typical performance characteristics (continued)
40/53 xc9504 series (20) operation start voltage vs. ambient temperature (21) operation retent ion voltage vs. ambient temperature (22) oscillation start voltage vs. ambient temperat ure (23) pfm duty ratio1, 2 vs. supply voltage (24) output voltage vs. ambient temperature  typical performance characteristics (continued)
41/53 xc9504 series  typical performance characteristics (continued) < v out1 = 3.3v, v in = 2.0v, i out1 =100  a ? 100ma > ? ? pwm control ? pwm/pfm swit ching control < 1 ch. step-up dc/dc controller > (tantalum capacitor use) (25) load transient response
42/53 xc9504 series < v out1 = 3.3v, v in = 2.0v, i out1 =10ma ? 100ma > ? ? pwm control ? pwm/pfm swit ching control < 1 ch. step-up dc/dc controller > (continued) (tantalum capacitor use) (25) load transient response (continued)  typical performance characteristics (continued)
43/53 xc9504 series < v out1 = 15.0v, v in = 3.3v, i out1 =100  a ? 20ma > ? ? pwm control ? pwm/pfm swit ching control < 1 ch. step-up dc/dc controller > (continued) (ceramic capacitor use when coil current is discontinuous. ) (25) load transient response (continued)  typical performance characteristics (continued)
44/53 xc9504 series < v out1 = 15.0v, v in = 3.3v, i out1 =1ma ? 20ma > ? ? pwm control ? pwm/pfm swit ching control < 1 ch. step-up dc/dc controller > (continued) (ceramic capacitor use when coil current is discontinuous. ) (25) load transient response (continued)  typical performance characteristics (continued)
45/53 xc9504 series < pwm control ? pwm / pfm switching control > ? < 1 ch. step-up dc/dc controller > (continued) ? (ceramic capacitor use when coil current is discontinuous. ) * en2=gnd ? (25) load transient response (continued)  typical performance characteristics (continued)
46/53 xc9504 series < v out2 = -7.5v, v in = 3.3v, i out2 =100ua ? -50ma > ? ? pwm control ? pwm/pfm swit ching control < 2 ch. inverting dc/dc controller > (tantalum capacitor use) (25) load transient response (continued)  typical performance characteristics (continued)
47/53 xc9504 series < v out2 = -7.5v, v in = 3.3v, i out2 =100ua ? - 20ma > ? ? pwm control ? pwm/pfm swit ching control < 2 ch. inverting dc/dc controller > (continued) (ceramic capacitor use when coil current is discontinuous. ) (25) load transient response (continued)  typical performance characteristics (continued)
48/53 xc9504 series < v out2 = -7.5v, v in = 3.3v, i out2 =1ma ? - 20ma > ? ? pwm control ? pwm/pfm swit ching control < 2 ch. inverting dc/dc controller > (continued) (ceramic capacitor use when coil current is discontinuous. ) (25) load transient response (continued)  typical performance characteristics (continued)
49/53 xc9504 series < pwm control ? pwm / pfm switching control > ? < 2 ch. inverting dc/dc controller > (continued) (ceramic capacitor use when coil current is discontinuous. ) (25) load transient response (continued)  typical performance characteristics (continued)
50/53 xc9504 series < soft-start wave form > ? < 2 ch. inverting dc/dc controller > (continued) (ceramic capacitor use when coil current is discontinuous. ) * en1=gnd ? (25) load transient response (continued)  typical performance characteristics (continued)
51/53 xc9504 series  packaging information ? msop-10 ? usp-10 * soldering fillet surface is not formed because the sides of the pins are not plated. ? usp-10 recommended pattern layout ? usp-10 recommended metal mask design 2.3
52/53 xc9504 series ? , ? represents fb voltage ? represents oscillation frequency ? represents production lot number 0 to 9, a to z repeated (g, i, j, o, q, w excepted) note: no character inversion used.  marking rule mark product series 1 xc9504b09xxx mark product series b xc9504b09xxx mark ? ? voltage (v) product series 0 9 0.9 xc9504b09xxx mark oscillation frequency (khz) product series 2 180 xc9504b092xx 3 300 xc9504b093xx 5 500 xc9504b095xx ? represents product series ? represents type of dc/dc controller msop-10 (top view) 3 8 7 6 9 10 4 5 2 1 usp-10 (top view) ? msop-10, usp-10
53/53 xc9504 series 1. the products and product specifications cont ained herein are subject to change without notice to improve performance characteristic s. consult us, or our representatives before use, to confirm that the inform ation in this catalog is up to date. 2. we assume no responsibility for any infri ngement of patents, pat ent rights, or other rights arising from the use of any info rmation and circuitry in this catalog. 3. please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog. 4. the products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction ca n be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. atomic energy; aerospace; transpor t; combustion and associated safety equipment thereof.) 5. please use the products listed in this catalog within the specified ranges. should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. we assume no responsibility for damage or loss due to abnormal use. 7. all rights reserved. no part of this ca talog may be copied or reproduced without the prior permission of torex semiconductor ltd.


▲Up To Search▲   

 
Price & Availability of XC9504B093DAL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X